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Problem Definition and Motivation

Introduction

Quadratic Knapsack Problem (QKP)

Standard Knapsack Problem (KP) with additional “profits” pij for
every pair of selected items i and j .

(QKP) max

n
∑

i=1

n
∑

j=1

pijxixj (1)

s.t.
n
∑

i=1

wixi ≤ c (2)

xi ∈ {0, 1}, i = 1, . . . , n (3)

xi = 1 iff item i is included in the solution

surveys: Pisinger [2007], Kellerer et al. [2004] ch.12
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Introduction

Graph Representation

Usually, not all pairs (i , j) contribute quadratic profits.
Consider graph G = (V ,E ) with |V | = n and |E | = m.

Every vertex v ∈ V corresponds uniquely to an item.

Edge (u, v) ∈ E ⇐⇒ two items corresponding to u, v yield
an additional profit, if they are both included in the solution.

(QKP) max
∑

(i ,j)∈E

pijxixj (4)

xii ≈ linear profit!
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Applications and Solution Approaches

Applications

media mix optimization (Pferschy and Sch. [2015])

airport and train-station location (Rhys [1970])

VLSI-design (Ferreira et al. [1996])

. . .

Exact Methods

Caprara et al. [1999]: branch and bound based on Lagrangian
relaxation

Billionnet and Soutif [2004]: Lagrangian decomposition

Pisinger et al. [2007]: aggressive reduction strategy in order to
fix some variables

Fomeni et al. [2014]: cut and branch for sparse instances
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Solution Approaches

(Meta)-Heuristics

Julstrom [2015,2012]: genetic algorithm

Fomeni and Letchford [2014]: dynamic program combined
with local search

Yang et al. [2013]: tabu search and Grasp

All these methods perform very well!

Yang et al. [2013] solve instances of up to 2000 items (gap
< 1.5%).
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Known Hardness

QKP is NP hard because of an easy reduction from
maximum clique

No hardness results under ”standard” assumptions

This result does not contradict the good results from above.
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Known Hardness

QKP is NP hard because of an easy reduction from
maximum clique

No hardness results under ”standard” assumptions

This result does not contradict the good results from above.
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Important Connections

Densest k-subgraph (dks)

GIVEN: graph G = (V ,E ) and an integer k

FIND: k-vertex induced subgraph with most edges

Find the k vertex induced subgraph of a given graph G = (V ,E )
containing the maximum number of edges.

It is obviously a subproblem of QKP.
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Important Connections

Hardness results for dks

Feige [2002] and Khot [2006] ruled out existence of a PTAS
(average case hardness assumptions)

Alon et al. [2011] ruled out any constant factor approximation
(based on hardness of random k-AND formulas)

Alon et al. [2011] showed superconstant inapproximation
results (based on the hidden clique assumption)
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Consequences for QKP

Hardness of QKP

All these results hold for QKP

Hence the empirically observed performance of the above
algorithms raises questions:

Are these (non-standard) complexity assumptions wrong?

Is there something wrong with the algorithms, resp. with the
instances used for testing them?

We will show that the used test-instances are problematic and give
a new class of hard test-instances.
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Test instances for QKP

Standard instances for QKP are randomly generated instances.
This is common for many optimization problems!

Instances by Gallo et al. [1980]

a density ∆ stands for the probability that a pij is non-zero

whenever pij is non-zero, pij is uniformly distributed ∈ [1, 100]

wi is uniformly distributed ∈ [0, 50]

c is uniformly distributed ∈ [0,
∑

wi ]

These instances where used in all subsequent computational papers
as core test instances.
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Related Results for Quadratic Objectives

Quadratic assignment problem

min
φ∈Sn

(

n
∑

i=1

n
∑

k=1

aikbφ(i)φ(k) +
n
∑

i=1

ciφ(i)

)

n facilities are placed to n locations

ciφ(i) is the cost of opening facility i at location φ(i)

aikbφ(i)φ(k) is the transportation cost caused by assigning
facility i to φ(i) and facility k to φ(k)

Note that any feasible solution corresponds to a permutation of
{1, 2, . . . , n}.
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Related Results for Quadratic Objectives

Asymptotic Result

Burkard and Frieze [1982] proved that:

whenever the costs are i .i .d random variables ∈ [0, 1]

the ratio of the optimal and worst solution tends to 1 in
probability

Generic Optimization Problems

Burkard and Frieze [1985] generalized this result to a broader class
of optimization problems with quadratic objective.

They have in common that a feasible solution has a fixed number
of n elements.

This does not hold for QKP - the empty knapsack is feasible.
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Prerequisites

Chernoff-Hoeffding bound by Angluin and Valiant [1979]

Let the random variables X1,X2, . . . ,Xn be independent with
0 ≤ Xk ≤ 1 for each k . Let Sn =

∑

Xk and let µ = E (Sn). Then
for any 0 ≤ ε ≤ 1:

P [Sn ≥ (1 + ε)µ] ≤ e−
1
3
ε2µ

P [Sn ≤ (1− ε)µ] ≤ e−
1
2
ε2µ
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Assumptions

pij are i .i .d . random variables defined on the interval [0, 1]

weights are arbitrary numbers from [0, 1]

the knapsack capacity c is proportional to n (i.e. c = λn)

all random variables have positive expectation (i.e.
E (X ) = µX > 0).
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asymptotic-QKP(n) problem:

a-QKP(n)

a-QKP(n) max
n
∑

i=1

n
∑

j=1

Pijxixj (5)

s.t.
n
∑

i=1

Wixi ≤ λn (6)

xi ∈ {0, 1}, i = 1, . . . , n (7)

If the weights are random variables:

L denotes the maximum number of items which can be
feasibly included into the knapsack

L itself is a random variable
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asymptotic-QKP(n) problem:

a-QKP(n)

Let a realization of Wi be given:

Then the realization of L can be determined by ordering the
items in non-decreasing order of their realized weights.

L ≈ l such that
∑l

i=1 wi ≤ λn and
∑l+1

i=1 wi > λn.

Different Solutions

ZA(n) denotes the random variable corresponding to the
objective value that results by including the L lightest items.

Z ∗(n) denotes the random variable which corresponds to the
optimal solution value of the given instance.
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Main Result

For any positive constant δ we get:

lim
n→∞

P

[

Z ∗(n)

ZA(n)
≤ (1 + δ)

]

= 1

Hence the objective value of this easy heuristic converges in
probability to the optimal objective value.

Consequences

Testing QKP (meta)-heuristics with randomly generated
instances is definitely not a good idea.

Testing exact QKP algorithms with randomly generated
instances should be done in a very careful way.
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Sketch of Proof

Relax a-QKP(n)

Relax a a-QKP(n) instance I by replacing the knapsack constraint
with a cardinality constraint.

F l
n denote set of all subsets of cardinality l (|F l

n| =
(

n
l

)

< 2n)

For a set S we define the objective value:

ZS
l (n) =

∑

i ,j∈S

Pij

Relaxed problem seeks for:

Zmax
l (n) = max

S∈F l
n

ZS
l (n) Zmin

l (n) = min
S∈F l

n

ZS
l (n)
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Sketch of Proof

Crucial Observation

In an a-QKP(n) instance with n items at least λn items fit, hence
L ≥ λn.

Z ∗(n) corresponds to a solution containing ≤ L items, hence there
always exits a certain index l ′ ≥ λn such that the following
inequality holds:

Zmax
l ′ (n) ≥ Z ∗(n) ≥ ZA(n) ≥ Zmin

l ′ (n) (8)
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By the linearity of expectation we get for all S ∈ F l
n:

E [ZS
l (n)] = E





∑

i∈S

Pii +
∑

1≤i<j≤n|i ,j∈S

Pij



 ≥ (9)

≥ lµm +
l(l − 1)

2
µm ≥

λ2n2

2
µm (10)
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Continuous Mapping

Show that for all l ≥ λn the following holds:

lim
n→∞

P

[

Zmax
l (n)

Zmin
l (n)

≤ (1 + δ)

]

= 1 (11)

By the continuous mapping theorem it is enough to show that:

lim
n→∞

P
[

Zmax
l (n) ≥ (1 + ε)E (Qn

l )
]

= 0 (12)

lim
n→∞

P
[

Zmin
l (n) ≤ (1− ε)E (Qn

l )
]

= 0 (13)
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Continuous Mapping

E (Qn
l ) denotes the expected objective value over all knapsacks

containing l items, while ignoring the capacity constraint:

E (Qn
l ) =

∑

S∈F l
n

ZS
l (n)
(

n
l

) (14)
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Equation (12): let S ′ now be any set of l knapsack items.

P
[

Zmax
l (n) ≥ (1 + ε)E (Qn

l )
]

= P





∨

S∈F l
n

(

ZS
l (n) ≥ (1 + ε)E (Qn

l )
)



 ≤

(15)

≤
∑

S∈F l
n

P
[

ZS
l (n) ≥ (1 + ε)E (Qn

l )
]

= |F l
n| · P

[

ZS′

l (n) ≥ (1 + ε)E (Qn
l )
]

≤

(16)

≤ |F l
n| · e

−
1
3 ε

2E(Qn
l ) ≤ |F l

n| · e
−

1
3 ε

2 λ
2n2

2 µm (17)
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Remarks

Remarks

The second inequality follows analogously.

Almost sure convergence can be shown by applying the
Borel-Cantelli-Lemma!

The result not only covers the instances by Gallo et al. [1980],
but a broad class of randomly generated instances.
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Hidden Clique Problem

Erdos-Renyi Random Graph

G (n, 12) has n vertices.

each edge appears with probability 1
2

Fact: maximum clique has size ≈ 2 log2(n)

Hidden Clique Problem

Plant a clique of size l >> 2 log2(n) into G (n, 12 )

Goal: find the planted clique



Asymptotic Behaviour of the Quadratic Knapsack Problem

A new Class of Instances

Hidden Clique Problem

Example of a G (10, 12 )
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Hidden Clique Assumption

Finding the hidden clique in polynomial time when l = nc with
c < 1

2 is impossible.

Note that l is huge compared to the existing clique in G (n, 12).

The dks hardness result of Alon et al. [2011] is based on this
assumption.
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Hidden Clique Assumption

Hidden Clique instances

Plant a clique of size ⌊n
1
2 ⌋ into a G (n, 12):

pii = 0 wi = 1 and pij = 1 whenever (i , j) ∈ E

c = ⌊n
1
2 ⌋

The optimal solution value of such an instance is (with
overwhelming probability)

⌊n
1
2 ⌋
(

⌊n
1
2 ⌋ − 1

)

2
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Computational Results

For each size 10 randomly generated hidden clique instances have
been tested with algorithms from the literature:

n = 200, c = 14, opt = 91

Fomeni and Letchford [2014] Julstrom [2005] GA own GA

78.9 85.4 88.3

n = 800, c = 28, opt = 378

Fomeni and Letchford [2014] Julstrom [2005] GA own GA

298.2 325.1 356.1
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Thank you for your attention!

Thank you for your attention!
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